Question 82. Match the reactions given in column I with the types of reactions given in column II.

	Column I		Column II	
(i)	$ \begin{array}{c c} Cl & Cl & Cl \\ \hline & Fe/Cl_2 \end{array} $ $ \begin{array}{c} Cl & Cl \\ \hline & Cl \end{array} $	(a)	Nucleophilic aromatic substitution	
(ii)	$CH_3-CH=CH_2+HBr\longrightarrow CH_3-CH-CH_3$ Br	(b)	Electrophilic aromatic substitution	
(iii)	CH ₃ −CH−I CH ₃ −CH−OH	(c)	Saytzeff elimination	
(iv)	CI OH \rightarrow NO ₂ \rightarrow NO ₂	(d)	Electrophilic addition	
(v)	CH ₃ CH ₂ CHCH ₃ $\xrightarrow{\text{alkaline}}$ CH ₃ CH = CHCH ₃ Br	(e)	Nucleophilic substitution (S _N 1)	

Solution: (i -> b), (ii -> d), (iii -> e), (iv -> a), (v -> c)

- (i) In this reaction, an electrophile CF attacks on to the benzene ring and substitution takes place.
- (ii) In this reaction, addition of HBr takes place on to the doubly bonded carbons of propene in accordance with Markownikoff's rule and electrophilic addition takes place.
- (iii) In this reaction, the reactant is secondary halide. Here, halogen atom is substituted by hydroxyl ion. As it is secondary halide so it follows S_N^1 mechanism.
- (iv) In this reaction, halogen atom is directly bonded to aromatic ring. So, it is nucleophilic aromatic substitution as OH⁻ group has substituted halogen of given compound.
- (v) It is an elimination reaction. It follows Saytzeff elimination rule.